Fidelity of Phenylalanyl-tRNA Synthetase in Binding the Natural Amino Acids
نویسندگان
چکیده
Aminoacyl-tRNA synthetases guard the fidelity of cognate amino acid incorporation during protein biosynthesis; for example, phenylalanyl-tRNA synthetase (PheRS) activates and transfers only Phe to its tRNA. Since we are interested in using a computational protocol to identify nonnatural amino acids that are incorporated by wild-type PheRS, it is critical to understand the fidelity of PheRS in binding the 20 natural amino acids. To this end, HierDock, a computational protocol for predicting binding sites and relative binding affinities, was used for testing the natural amino acids in PheRS. Scanning the entire ligand-accessible protein surface for the best binding region, we find that HierDock correctly identifies the active site of Phe in PheRS and predicts Phe within 0.61 Å RMSD of the crystal structure. HierDock also successfully shows PheRS discriminates for Phe, as the noncognate amino acids bind less favorably in the binding site of Phe. However, we find that Met, Cys, and Tyr bind competitively but at positions distant from the Phe binding site. This result corroborates in vitro measurements of aminoacyl adenylate formation, which show Met competes with Phe at the amino acid binding stage. We predict that the binding site of Met would not activate PheRS, as the noncognate amino acid cannot establish suitable hydrogen bonds with the PheRS reaction center. These results validate the use of HierDock in predicting the binding sites of the cognate amino acids in PheRS. The HierDock procedure calculates the discrimination of aminoacyl-tRNA synthetases at the stage of binding the cognate amino acid and offers a molecular level understanding of the mistakes made in protein biosynthesis that are not readily uncovered through experiments. This technique is also useful for predicting the binding of a selected nonnatural amino acid analogue, thereby indicating whether the molecule would be incorporated into a wild-type aminoacyl-tRNA synthetase.
منابع مشابه
Site-specific Incorporation of Amino Acid Analogs into Proteins In Vivo by an Engineered Yeast Phenylalanyl-tRNA Synthetase
Aminoacyl-tRNA synthetases (aaRSs) catalyze aminoacylation and establish the rules of genetic code. Precise manipulation of synthetase activity can alter the aminoacylation specificity to attach non-canonical amino acids to the intended transfer RNA (tRNA). Subsequently by codon-anticodon interaction between messenger RNA (mRNA) and tRNA the amino acid analogs can be assigned to specific sites ...
متن کاملDesign of a bacterial host for site-specific incorporation of p-bromophenylalanine into recombinant proteins.
Introduction of a yeast suppressor tRNA (ytRNA(Phe)(CUA)) and a mutant yeast phenylalanyl-tRNA synthetase (yPheRS (T415G)) into an Escherichia coli expression host allows in vivo incorporation of phenylalanine analogues into recombinant proteins in response to amber stop codons. However, high-fidelity incorporation of non-natural amino acids is precluded in this system by mischarging of ytRNA(P...
متن کاملMechanism of tRNA-dependent editing in translational quality control.
Protein synthesis requires the pairing of amino acids with tRNAs catalyzed by the aminoacyl-tRNA synthetases. The synthetases are highly specific, but errors in amino acid selection are occasionally made, opening the door to inaccurate translation of the genetic code. The fidelity of protein synthesis is maintained by the editing activities of synthetases, which remove noncognate amino acids fr...
متن کاملPolyspecific pyrrolysyl-tRNA synthetases from directed evolution.
Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which...
متن کاملPost-transfer editing in vitro and in vivo by the beta subunit of phenylalanyl-tRNA synthetase.
Translation of the genetic code requires attachment of tRNAs to their cognate amino acids. Errors during amino-acid activation and tRNA esterification are corrected by aminoacyl-tRNA synthetase-catalyzed editing reactions, as extensively described for aliphatic amino acids. The contribution of editing to aromatic amino-acid discrimination is less well understood. We show that phenylalanyl-tRNA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003